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Abstract

We address theoretically the linear stability of a variable aspect ratio, rectangular plate in a uniform and

incompressible axial flow. The flutter modes are assumed to be two-dimensional but the potential flow is calculated in

three dimensions. For different values of aspect ratio, two boundary conditions are studied: a clamped-free plate and a

pinned-free plate. We assume that the fluid viscosity and the plate viscoelastic damping are negligible. In this limit, the

flutter instability arises from a competition between the destabilising fluid pressure and the stabilising flexural rigidity of

the plate. Using a Galerkin method and Fourier transforms, we are able to predict the flutter modes, their frequencies

and growth rates. The critical flow velocity is calculated as a function of the mass ratio and the aspect ratio of the plate.

A new result is demonstrated: a plate of finite span is more stable than a plate of infinite span.

r 2007 Elsevier Ltd. All rights reserved.

PACS: 46.40.�f; 46.40.Ff; 46.70.De
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1. Introduction

In his seminal paper on the instability of jets, Lord Rayleigh (1879) suggested that his theoretical approach could be

used to prove that an infinite flag is always unstable. Indeed, it can be proved easily that an elastic plate of infinite

dimension (both in the span- and streamwise direction) is always unstable when immersed in an axial potential flow.

However, this fluid–structure interaction problem becomes far more complex mathematically when the finite

dimensions of the flag are explicitly taken into account. This is the subject of the present paper.

Using analytical tools of airfoil theory, Kornecki et al. (1976) have shown that a plate of infinite span but finite chord

was stable for flow velocities below a critical velocity (in the following, we will use the term plate instead of flag to

emphasise the importance of the finite density and finite bending stiffness of the material). Kornecki et al. (1976)

assumed an elastic plate and used two different theoretical approaches to model the flow around this plate. They first
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assumed a potential flow with zero circulation. Then, using a method introduced by Theodorsen (1935), they added a

distribution of vorticity in the plate wake to smooth out the trailing edge singularity of the pressure field. This results in

an unsteady circulatory flow. More recently these approaches have been used again with better computer accuracy

(Huang, 1995; Watanabe et al., 2002a). Another theoretical approach has been used by Guo and Paı̈doussis (2000).

They solved the two-dimensional problem (assuming infinite span) in the Fourier space for a potential flow. The present

paper can be viewed as an extension of the analysis of Guo and Paı̈doussis (2000) to take into account the finite span of

the plate.

An important aspect of these theoretical models is the way they deal with the boundary conditions of the flow.

Kornecki et al. (1976) in their zero-circulation model had pressure singularities both at the trailing and the leading edge.

The use of the Theodorsen (1935) theory in the second model of Kornecki et al. (1976) suppresses the trailing edge

singularity by the use of the Kutta condition. In this unsteady problem, even if the mathematical proof has yet to be

given (Frederiks et al., 1986), the Kutta condition can indeed be used because the Reynolds number is usually very large

and the flutter frequency is of order one (Crighton, 1985). Finally, the theoretical model of Guo and Paı̈doussis (2000)

solves the pressure distribution problem in the Fourier space assuming implicitly no singularities. This means that an

incoming ‘‘wake’’ has to be added to the flow to suppress the leading edge singularity. This ‘‘wake’’ cannot be justified

on physical grounds. Surprisingly, these three different two-dimensional models give almost the same results for the

critical velocity of the instability [see Watanabe et al. (2002a)]. This means that the wakes added upstream or

downstream do not have a great influence on the stability of this fluid–structure interaction.

Shayo (1980) first attempted a three-dimensional stability analysis to understand the dependence of the

critical velocity on the plate span. In his study, he made several mathematical assumptions to simplify the

calculation that led him to conclude that a flag of infinite span is more stable than a finite one. This latter result is in

contradiction with a slender body approach (Lighthill, 1960; Datta and Gottenberg, 1975; Lemaitre et al., 2005). This

discrepancy was reexamined by Lucey and Carpenter (1993) who addressed theoretically the linear stability of a

compliant panel of finite aspect ratio embedded in a rigid wall (this case bears strong similarity with the flutter of a flag

in axial flow). They found that a compliant wall of finite span is always more stable than its infinite counterpart [see also

the review of Yadykin et al. (2003) on the added mass of a flexible plate of finite aspect ratio]. This seems in

contradiction with the results of Shayo (1980). More recently, Argentina and Mahadevan (2005) studied the flutter

instability of a flag with a simple two-dimensional model based on the theory of Kornecki et al. (1976). Using the data

of a three-dimensional numerical simulation, their model was then adjusted to take into account the finite

aspect ratio of the flag. They showed qualitatively that the finite span tends to stabilise the system. As we shall see in the

present paper, a theoretical analysis can be carried out without any assumptions and it shows that the smaller the plate

span, the more stable the system, in agreement with the results of Lucey and Carpenter (1993) and Argentina and

Mahadevan (2005).

Experiments with plates made of metal, paper or plastic sheets have been carried out by Taneda (1968), Datta and

Gottenberg (1975), Kornecki et al. (1976) and more recently by Yamaguchi et al. (2000), Watanabe et al. (2002b),

Shelley et al. (2005) and Souilliez et al. (2006) [see the book of Paı̈doussis (2004) for a comprehensive list of references].

These experiments showed that the flutter modes observed at threshold are always two-dimensional. They also showed

that the instability threshold is always larger than the theoretical predictions. The work of Watanabe et al. (2002a)

shows that the critical velocity measured in the experiments is at least twice as large as the analytical and numerical

predictions for all experimental parameters. So far, no satisfactory explanation of this apparent discrepancy has been

given.

Cantilevered plates in axial flow have also been modelled numerically by Watanabe et al. (2002a), Balint and Lucey

(2005) and Tang and Paı̈doussis (2006). In these studies, a two-dimensional solver based on the Navier–Stokes

equations or on a vortex method has been combined to a linear beam model for the plate. The critical velocities

obtained with these numerical simulations are similar to the results of Kornecki et al. (1976) and Guo and Paı̈doussis

(2000). In their papers, Guo and Paı̈doussis (2000) and Balint and Lucey (2005) also provide a mechanism

of irreversible energy transfer from the fluid to the structure that gives another insight into the instability

mechanism.

In this paper, we present an analytical stability analysis of an elastic plate immersed in an axial uniform flow. The

analysis assumes a two-dimensional flutter motion (as it has been observed in the experiments so far), but takes into

account explicitly the finite span and chord of the plate to calculate the surrounding flow. This paper is divided into four

sections. We shall first present the principle of the stability analysis involving a Galerkin method. The three-dimensional

flow will then be calculated in the Fourier space. The resulting eigenmodes and critical velocities and their dependence

on the aspect ratio will then be discussed. Finally, we shall see how these results may explain the observed critical

velocities in the experiments. For the sake of clarity, the most technical parts of our analytical developments have been

relegated to Appendices at the end of the paper.
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2. Principles of the stability analysis

In this section, the different steps of the stability analysis are detailed. Starting from the equation of motion for the

plate and expanding its two-dimensional deflection on Galerkin modes, the initial problem is transformed into an

eigenvalue problem for the flutter modes and their frequencies.
2.1. Equation of motion

As shown in Fig. 1, the plate lies in the vertical OXZ plane and the wind is parallel to OX. Assuming a two-

dimensional deformation of the plate, the lateral deflection Y is a function of the streamwise direction X and the time T

only. The equation of motion of the elastic plate is given by

rp

q2Y

qT2
þD

q4Y

qX 4
¼ hDPiZ, (1)

where rp is mass per unit surface of the plate, D its flexural rigidity (given by D ¼ Eh3p=½12ð1� n2Þ�, E being Young’s

modulus, hp the plate thickness and n the Poisson ratio), DP is the pressure difference between the two sides of the plate

and h:iZ denotes the average along the spanwise direction for �H=2oZoH=2. Because of the antisymmetry of the flow

with respect to the plate plane OXZ, perturbation pressures on the upper and lower sides are equal and opposite.

Therefore, DP ¼ �2Pþ, where Pþ is the perturbation pressure on the side Y40.

In Eq. (1) above, we have assumed that the viscoelastic damping of the material and the tension due to the viscous

boundary layers are negligible. If needed, the form of the present analysis facilitates the introduction of these terms in

future studies.

The plate chord L and the flow velocity U are used as characteristic length and velocity, respectively. Using

lowerscript letters for dimensionless quantities, we have

x ¼
X

L
; y ¼

Y

L
; z ¼

Z

L
; t ¼

TU

L
. (2)

The above equation of motion (1) is now made dimensionless,

q2y

qt2
þ

1

U�2
q4y

qx4
¼M�hpiz, (3)

where p is the dimensionless pressure difference, U� is the reduced flow velocity and M� the mass ratio given by

p ¼ �
2Pþ

raU2
; U� ¼

ffiffiffiffiffi
rp

D

r
LU ; M� ¼

raL

rp

, (4,5,6)

with ra the density of the surrounding fluid (usually air).

For an inviscid surrounding fluid and a perfectly elastic material with no damping, the motion of the plate is entirely

governed by three dimensionless parameters: U�, M� and the aspect ratio H� which is

H� ¼
H

L
. (7)
XY

0 Y(X,T)

Z

L

H—2

H—2-

U

Fig. 1. Schematic of the plate subject to a two-dimensional deflection Y ðX ;TÞ in an axial flow of velocity U . The plate chord is L and

H its span.
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2.2. Galerkin decomposition

Equation of motion (3) becomes linear if p is linear with respect to y (this is the case if the flow is supposed to be

potential). In this case, we can assume a Galerkin decomposition of the lateral deflection and switch to the frequency

domain such that the deflection y can be written as

yðx; tÞ ¼
XN

n¼1

anynðxÞe
iot þ c:c:; (8)

where c:c: denotes the complex conjugate, N is the truncation of the Galerkin expansion and yn are the beam

eigenfunctions in vacuo satisfying the free boundary condition at the trailing edge and either a clamped or pinned

boundary-condition at the leading edge [see Paı̈doussis (1998, 2004)]. The dimensionless angular frequency o is such

that o ¼ OL=U (where O is the dimensioned angular frequency). Note that these Galerkin modes satisfy the following

relation:

d4yn

dx4
¼ k4

nyn, (9)

where kn are wavenumbers sorted in ascending order. The dimensionless wavenumbers kn are related to the dimensional

ones Kn through kn ¼ KnL.

To solve the equation of motion (3) using the Galerkin expansion (8), one needs to determine the pressure pnðx; zÞ
associated with the deflection ynðxÞ of the plate at angular frequency o. This will be done in the next section.

Upon defining the standard scalar product as

f � g ¼

Z 1

0

f ðxÞgðxÞdx, (10)

the Galerkin modes satisfy the orthogonality condition ym � yn ¼ dn
m, where d

j
i is the Kronecker delta. By multiplying

Eq. (3) by the modes ym, the equation of motion becomes a system of N linear equations with N unknowns (the

amplitudes an). The solvability condition imposes

det �o2Iþ
1

U�2
Q�M�P

� �
¼ 0, (11)

where I is the N �N identity matrix, Q is the diagonal matrix with the k4
n in ascending order on its diagonal and

Pm;nðoÞ ¼ ym � hpnðx; zÞiz. (12)

Note that the matrix P is a function of o as will be shown below.

For a given mass ratio M� and dimensionless velocity U�, the solvability condition (11) has 2N solutions oi

corresponding to each flutter mode [note that if oi is solution, then �oi is also solution Eq. (11)]. The frequencies of the

flutter modes are simply given by RðoiÞ and their growth rates by si ¼ �IðoiÞ. To determine the stability of the plate

flutter, one now needs to calculate the matrixP and search the velocity U� needed to have at least one flutter mode with

a positive growth rate.
3. Three-dimensional flow

In this section, we calculate the potential flow above the plate for a given aspect ratio H�. The calculation is done in

the Fourier space. As we shall see, we shall need to solve two singular integral equations to obtain the pressure on the

plate, one along the span and the other along the chord. The presence of these singularities stress the intrinsic singular

aspect of the flow in this problem.

3.1. Perturbation potential in the Fourier space

Assuming an inviscid and irrotational flow, the pressure pn is given by the unsteady Bernoulli equation

pn ¼ 2
qjn

qx
þ iojn

� �
y¼0

, (13)
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where jnðx; y; zÞ is the perturbation velocity potential at frequency o in the half-plane y40. The factor 2 comes from an

opposite perturbation pressure on the other side of the plate. The potential jn satisfies a Laplace equation

q2jn

qx2
þ

q2jn

qy2
þ

q2jn

qz2
¼ 0, (14)

and the following boundary conditions

jnjx!�1 ¼ jnjy!1 ¼ jnjz!�1 ¼ 0, (15)

qjn

qy

����
y¼0

¼ ioyn þ
dyn

dx
for ðx; zÞ 2 D, (16)

pn ¼ 2
qjn

qx
þ iojn

� �
y¼0

¼ 0 for ðx; zÞeD, (17)

where the domain D corresponds to the plate

D ¼ ðx; zÞjx 2 ½0 1� and z 2 �
H�

2

H�

2

� �� 	
. (18)

The second boundary condition (16) derives from the continuity of the normal velocity above the plate. The third

boundary condition (17) ensures the continuity of the pressure outside the plate in the Oxz plane. Note that this

boundary condition allows a solution of the form jnðx; y ¼ 0Þ ¼ j0 expð�ioxÞ. This is equivalent to a vorticity

distribution in the Oxz plane written as a progressive wave travelling with velocity U (coming back to dimensional

terms). Downstream of the trailing edge, this wave models the ‘‘wake’’ of the plate; upstream of the leading edge, it has

no physical meaning.

The difficulty of the mathematical problem arises from the heterogeneity of the boundary conditions. If Eq. (17) were

a condition on the y-derivative of jn as Eq. (16), we would have a Neumann problem, which would be simpler to solve.

Here, the boundary conditions (16) and (17) involve different derivatives of jn leading to singularities along the edges of

the plate.

To solve the set of equations (14)–(17), we switch to the Fourier space both in x- and z-direction. Using the Laplace

equation (14), we have

jnðx; y; zÞ ¼

Z 1
�1

Z 1
�1

ejnðkx; kzÞe
�kyeikxxeikzz dkx dkz, (19)

where ejnðkx; kzÞ is the Fourier transform of jnðx; 0; zÞ and

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
z

q
. (20)

The rest of the present section involves lengthy and technical calculations; readers not interested in these technical

details may jump to the results section.

3.2. Boundary conditions in the Fourier space

Using Eqs. (13) and (19) gives the pressure above the plate in the Fourier space

pnðx; zÞ ¼

Z 1
�1

2iðkx þ oÞepnðkx; zÞe
ikxx dkx, (21)

where epn is

epnðkx; zÞ ¼

Z 1
�1

ejnðkx; kzÞe
ikzz dkz. (22)

The function epn is proportional to the pressure along the span for a given wavenumber kx. For an infinite plate in the z-

direction (as usually assumed in previous theoretical studies), epn is constant along the z-axis.
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Taking the z-derivative of Eq. (22), executing an inverse Fourier transform and using the boundary condition shown

in Eq. (17) gives

ejnðkx; kzÞ ¼
1

2pikz

Z H�=2

�H�=2

qepn

qz
e�ikzz dz. (23)

Now taking the x-derivative of Eq. (21), its inverse Fourier transform and using again boundary condition (17) gives

epnðkx; zÞ ¼ �
1

4pkxðkx þ oÞ

Z 1

0

qpn

qx
e�ikxx dx. (24)

These latter two equations allow the expression of boundary condition (17) in Fourier space.

To solve the problem, we now need to use boundary condition (16) expressing the continuity of normal velocity

above the plate. Using the Fourier transform (19) with boundary condition (16) givesZ 1
�1

evnðkxÞe
ikxx dkx ¼ ioyn þ

dyn

dx
for ðx; zÞ 2 D, (25)

with

evnðkxÞ ¼

Z 1
�1

�kejnðkx; kzÞe
ikzz dkz. (26)

The right-hand side of Eq. (25), ½ioyn þ dyn=dx�, is a function of x only. Therefore evnðkxÞ which should be a function of

both kx and z does not depend on z for �H�=2ozoH�=2. Using Eq. (23) with Eq. (26) and inverting the integral signs

gives Z H�=2

�H�=2

qepn

qv
ðkx; vÞ

Z 1
�1

k
ikz

eikzðz�vÞ dkz dv ¼ �2pevnðkxÞ, (27)

where v is a dummy variable in place of z (therefore, this variable v is not related to evn). Solving this integral equation

for qepn=qv leads to the expression of the dependency of the pressure on the z-direction.

3.3. Pressure along the span

Upon rescaling z, v and kx with the characteristic length H�=2 in such a way that

v ¼
2v

H�
; z ¼

2z

H�
; kx ¼

jkxjH
�

2
. (28)

Eq. (27) becomesZ 1

�1

p0nðvÞF ðkxðz� vÞÞdv ¼ p for z 2 ½�11�, (29)

where F is given by the integral

F ðX Þ ¼

Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

a2

r
sinðaX Þda ¼ �

Z X

0

K1ðaÞ
a

da, (30)

where Kn is the modified Bessel function of the second kind and pn depends on epn in the following way:

pnðvÞ ¼ �
jkxjevnðkxÞ

epnðkx; vÞ, (31)

where the prime denotes differentiation with respect to v. The function pn implicitly depends on kx.

The solution of the singular integral equation (29) for p0n is outlined in Appendix A. The main results are presented on

Fig. 2. For large kx (which means that the wavelength of the deflection 2p=kx is small compared to the span H�), the

pressure profile is constant except close to the edges of the plate. It converges towards a top-hat function for infinite kx,

or equivalently infinite span (this is what was expected from two-dimensional theory). For small kx, the pressure profile

along the span is elliptic

pnðvÞ�kx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
when kx ! 0. (32)
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We are interested in the average of pn along the span which is a function of kx only. In Fig. 3, this average is plotted:

the symbols represent the results of a symbolic-numerical calculation and the two plain curves are asymptotic

expansions valid in the limit of either small or large kx. For small kx, the average is obtained from Eq. (32) and is simply

hpniz ¼
pkx

4
þ Oðk

2

xÞ when kx ! 0. (33)

This result allows the recovery of the slender body approximation of Lighthill (1960) [see also Lemaitre et al. (2005)] as

detailed in Appendix C. For large kx another expansion can be used:

hpniz ¼ 1�
1

2kx

þ oðe�kx Þ when kx !1. (34)
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We have called this expansion ‘‘large span approximation’’ since it is only valid for sufficiently large aspect ratio H�. In

Fig. 3, the dashed line shows an approximation valid through the whole domain of kx:

hpniz 	 1�
1

2kx þ exp½ðp=4� 2Þkx�
. (35)

This approximation gives the correct average pressure within 3% error (this is the maximum difference between the

dashed curve and the crosses in Fig. 3). It also has the advantage of giving the correct mathematical expansion given by

Eqs. (33) and (34) in the limit of small and large kx.

Coming back to the former dimensionless variables kx and z, evn can be expressed from Eqs. (31) and (35) as

evnðkxÞ ¼ �hepnðkx; zÞizjkxjaðjkxjH
�Þ, (36)

where h:iz still denotes the average along the span for �H�=2ozoH�=2 and a is the following function:

aðX Þ 	 1þ
1

X � 1þ exp½ðp=8� 1ÞX �
. (37)

3.4. Pressure along the chord

Inserting Eqs. (36) and (24) into Eq. (25) and inverting the integral signs gives

1

4p

Z 1

0

hp0nðu; zÞizGðx� u;H�Þdu ¼ ioyn þ
dyn

dx
, (38)

where the prime denotes differentiation with respect to the dummy variable u (in place of x) and

GðX ;H�Þ ¼

Z 1
�1

jkxj

kxðkx þ oÞ
aðjkxjH

�ÞeikxX dkx, (39)

where a is defined in Eq. (37). Eq. (38) is a singular integral equation for p0n, similar to Eq. (22) in Guo and Paı̈doussis

(2000). The only difference is that G depends explicitly on the aspect ratio H� in the present paper. Eq. (38) can be

solved by multiplying by ðioþ d=dxÞ, leading to

1

4p

Z 1

0

hp0nðu; zÞizHðx� u;H�Þdu ¼ �o2yn þ 2io
dyn

dx
þ
d2yn

dx2
, (40)

with

HðX ;H�Þ ¼ �2

Z 1
0

aðkxH�Þ sinðkxX Þdkx. (41)

This function can be approximated by

HðX ;H�Þ 	 �
2

X
�

8

H�
�

8� p
H� þ 2jX j

� �
sgnðX Þ. (42)

This latter expression is a very good approximation (within 2%) of Eq. (41). Using Eqs. (33) and (34), this expression is

shown to be the correct exact expansion in the limit of small H� (slender body approximation) and large H� (large span

approximation), as shown in Appendices C and D.

The average pressure hpnðx; zÞiz can be obtained from the singular integral equation (40) on its derivative. Since this

integral equation is linear, the pressure can be decomposed into three terms, corresponding to the three terms on the

right-hand side of Eq. (40):

pnðx; zÞ

 �

z
¼ �o2pðMÞn ðxÞ þ 2iopðGÞn ðxÞ þ pðKÞn ðxÞ, (43)

where the superscripts M, G and K correspond to the added mass, the gyroscopicity and stiffness, respectively [see

Paı̈doussis (2004)].

The solution of integral equation (40) is found by a Gauss–Chebyshev method which is detailed in Appendix B. For a

given aspect ratio H�, each pressure term on the right-hand side of Eq. (43) can be evaluated numerically. In the limit of

large aspect ratio, an expansion of the pressure in powers of 1=H� is found. We call this mathematically exact expansion

‘‘large span approximation’’ (its derivation is detailed in Appendix D). In the limit of small aspect ratio, the slender

body approximation holds. It has first been given by Lighthill (1960) but it can be derived from the present formulation

(see Appendix C for details).



ARTICLE IN PRESS
C. Eloy et al. / Journal of Fluids and Structures 23 (2007) 904–919912
4. Results

We have now calculated the fluid load on the plate for any given Galerkin mode yn and any given aspect ratio H�. We

are thus able to determine the stability of the system by using the solvability condition (11). In this section, the

eigenfrequencies and growth rates of the flutter modes are given as a function of the dimensionless flow velocity U�, the

mass ratio M� and the aspect ratio H�.
4.1. Eigenmodes and eigenfrequencies

For a given aspect ratio H� and a given mass ratio M�, we can now calculate the complex frequencies of the flutter

modes o as a function of the dimensionless velocity U�. The results of such a calculation are given in Fig. 4 for a
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Fig. 4. Frequencies (top) and growth rates (bottom) of the first four modes as a function of the dimensionless flow velocity U�. The

mass ratio of the clamped-free plate is M� ¼ 1 and its aspect ratio H� is infinite. The labels number the different flutter modes in order

of ascending frequency.
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clamped-free plate when M� ¼ 1 and H� ¼ 1. The top curve shows the real part of the frequency RðoÞ multiplied by

U�, and the bottom curve show the growth rates s ¼ �IðoÞ for the first four eigenmodes.

We chose to plot the product RðoÞU� instead of RðoÞ alone, because it is simply equal to k2
n in vacuo. This can be

seen by taking the limit of vanishing M� in Eqs. (3) and (9). Therefore, one expects the eigenfrequencies to be close to

those values if the flow simply excites the natural modes of vibration in vacuo. The first values of k2
n for a clamped-free

plate are 3:5, 22, 62, 121 and we observe that indeed, in the limit of vanishing U�, the eigenfrequencies in Fig. 4 are close

to those values but slightly below. This shift is simply due to an added mass effect.

For higher values of the flow velocity U�, both the eigenfrequencies and the growth rates change. For U�o5:12, the
growth rates are all negative, meaning that all modes are stable. For U�45:12, the second mode becomes unstable and

for higher flow velocity, the third and fourth modes eventually become unstable too, as seen in Fig. 4. Slightly above the

destabilisation of the third mode (at U� ¼ 11:0), the second mode becomes stable again for U�413:5. The critical flow
velocity U�c is defined as the lower value of the flow velocity for which a mode becomes unstable. In this example, we

have U�c ¼ 5:12. This critical flow velocity is implicitly a function of the mass ratio M� and the aspect ratio H�. We shall

see below how these two dimensionless parameters modify the critical velocity.

In Fig. 4, the first mode appears to be always stable, as it is the case for all values of parameters M� and H� we have

tested. For 6:32oU�o14:2, the branch of this first flutter mode splits into two divergence modes (of zero frequencies)

labelled 1a and 1b; however, these divergence modes always remain stable in the configurations tested [Guo and

Paı̈doussis (2000) have shown that these divergence modes can be unstable for different boundary conditions such as a

clamped-clamped plate].

4.2. Critical curves

We now explore the variation of the critical velocity U�c as a function of the aspect ratio H� and the mass ratio M�.

In Fig. 5, for the same mass ratio M� ¼ 1 as in Fig. 4, we have plotted the critical velocity U�c as a function of H� for

a clamped-free plate. Crosses show the results of the exact calculation for different aspect ratios H� and the solid lines

are the results of the slender-body and large-span approximations valid in the asymptotic limit of small and large H�,

respectively.

As seen in Fig. 5, the critical velocity is a monotonically decreasing function of H�. For instance, for H� ¼ 1, the

present theory gives U�c ¼ 7:36, whereas it is equal to 5:12 for H� ¼ 1 (for H� ¼ 1, the large span approximation gives

U�c ¼ 8:21). This means that, for this value of M�, the aspect ratio has a strong influence on the resulting critical

velocity and that it should be taken into account to model the experiments.
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Fig. 5. Critical velocity as a function of the aspect ratio H� for M� ¼ 1 and for a clamped-free plate. Crosses are the results of the

exact calculation. The curves on the left and right are the results of the slender body and the large span approximation, respectively.
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0:6oH�o1:5 (Huang, 1995); open diamonds and circles for H� 	 0:25, AISI 304 and waxed paper, respectively (Yamaguchi et al.,

2000).
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To emphasise the importance of the aspect ratio in determining the critical velocity, we have plotted in Fig. 6 the

critical velocity as a function of the mass ratio M� for three different values of H�. The bottom curve shows the classical

result obtained for plates of infinite span: H� ¼ 1. In this case, it is the exact same result as the one obtained by Guo

and Paı̈doussis (2000). The two top curves show the same result taking into account a finite aspect ratio H� ¼ 1 and

H� ¼ 0:2. As can be seen from the figure, for small values of the mass ratio ðM�t1Þ, the critical velocity increases as the

aspect ratio decreases. However, for larger mass ratios ðM�
\1:5Þ, the curves tend to gather to give a critical velocity

around U�c 	 10. This is because, for the aspect ratios considered in this figure, the wavelength of the flutter mode is

small compared to the span when M�
\1:5, and thus a two-dimensional theory ðH� ¼ 1Þ gives approximatively the

accurate result.

In Fig. 6, one can also see two different modes of instability corresponding to the two lobes of the curves. For

H� ¼ 1, for M�t1:5, the first unstable mode is the second mode as it was the case in Fig. 4 for M� ¼ 1. For

1:5tM�t6, the third mode is the first unstable one. For larger M�, it is the fourth mode and for even larger M�

eventually the 5th, 6th, etc. (not shown on the figure). The transition between modes is slightly shifted when the aspect

ratio H� is changed. This explains why the critical curve is higher for H� ¼ 1 than for H� ¼ 1 in the range

1:32oM�o1:42.
For particular values of M�, for instance for M� ¼ 1:5 and H� ¼ 1, the linear theory predicts that, for increasing U�,

the flow becomes unstable for the second mode for 9:2oU�o11:2, then stable when 11:2oU�o11:4, then unstable

again for the third mode for U�411:4. This peculiar behaviour has already been reported by Lemaitre et al. (2005) in

the case of plates of very small aspect ratio. It has never been observed experimentally for two reasons. Firstly, because

the instability bifurcation is subcritical meaning that as soon as the instability starts, the amplitude of the mode jumps

to another branch not predicted by the present linear stability analysis; secondly, a small material damping added in the

theory would smooth out the cusps observed in the curves of Fig. 6 and thus suppress this peculiar behaviour. As

Lemaitre et al. (2005) have shown, the addition of a material damping of Kelvin–Voigt type always smooth the critical

curves but it may either decrease or increase the value of the critical velocity depending on the values of M� and H� [this

is also discussed in Paı̈doussis (1998)]. Note that, in the present paper, the material damping could easily be included

since it is a linear effect.

As shown in Fig. 6, the present theoretical stability curve for aspect ratio H� ¼ 1 compares well with experiments for

M�t1. However, for larger mass ratios M�
\2, the agreement is not as good [for the other materials considered in

Yamaguchi et al. (2000), the critical velocity is even higher; typically they find 15oU�co45]. We suggest that this is due

to three-dimensional effects in the deflection of the plate prior the flutter instability (such as is the case for a real fabric

flag). These 3-D effects tend to rigidify the plate and thus delay the instability.
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Fig. 7 shows the critical curves for a different set of boundary conditions: a pinned-free plate. The results bear

similarity with those of a clamped-free plate. We recover that the smaller the span, the more stable is the system. The

same modes are unstable for small M� (first the second mode, then the third). However, there are three main

differences: (i) the velocity threshold is slightly higher for the second mode whereas it is lower for the third mode; (ii) the

transition between the second and third mode is shifted to M� 	 0:8; (iii) and the critical velocities of the third

mode and fourth mode (for M�
\1 and M�

\5) monotonously decrease as M� increases. Again, the peculiar

behaviour and the cusps observed for M�
\5 would probably be suppressed if one added a material damping to the

present model. Note also that the present theory could also be used to calculate the stability of any set of boundary

conditions.
5. Conclusions

In this paper, we have developed a new theoretical model that enables the modelling of the flutter of a rectangular

cantilevered plate in axial flow. We have assumed that the plate deflection is two-dimensional and immersed in a three-

dimensional potential inviscid flow. Starting with the equation of motion of the plate, the stability analysis has been

performed using a Galerkin method. The inviscid fluid forces on the plate have been calculated in the Fourier space

assuming a finite plate span. The eigenmodes and the corresponding eigenfrequencies and growth rates have been

calculated as a function of the three dimensionless parameters of the problem: U� the flow velocity, H� the plate aspect

ratio, and M� its mass ratio. This theory has also been expanded in the asymptotic limit of large span, giving rise to

what we called the ‘‘large span approximation’’.

We have shown that for a given mass ratio, the critical velocity is almost always a decreasing function of

the aspect ratio. It means that for a given plate chord, the smaller the span, the more stable is the system, as predicted

by slender body theory for smaller values of H�. This behaviour could account for the apparent discrepancy

between the theoretical models and the experimental results published so far for small M�. Indeed, in the literature,

the experiments have always appeared to be more stable than the predictions (Watanabe et al., 2002a). It has been

shown in this paper that when the aspect ratio is explicitly taken into account, the predictions of the critical

velocity are much improved. A detailed experimental study on the flutter of Mylar plates is the subject of a

forthcoming paper.

The present work could be extended to different configurations. If Eq. (3) that models the plate motion remains

linear, many extra effects can be added into the analysis, for instance viscoelastic material damping or tensile effects

could be introduced. The boundary conditions on the plate can also be modified by changing the basis of Galerkin

modes, as we have shown by studying the clamped-free and the pinned-free plate.
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Appendix A. Integral equation for the pressure along the span

We now want to solve the singular integral equation (29)Z 1

�1

p0nðvÞFðkxðz� vÞÞdv ¼ p for z 2 ½�1 1�, (A.1)

for p0n with F ðX Þ still given by Eq. (30). To achieve this end, p0n is expanded as a series of Chebyshev polynomials

p0nðvÞ ¼
XJ

j¼1

Aj

T2j�1ðvÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p , (A.2)

where Ti are the Chebyshev polynomials of the first kind, Aj the unknown amplitudes and J is the truncation of this

expansion [the function F ðX Þ being even, p0n has to be odd, this is why only the odd Ti are needed in the previous

expansion]. Introducing the scalar product

f 
 g ¼
2

p

Z 1

�1

f ðzÞgðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
dz, (A.3)

inserting Eq. (A.2) into Eq. (A.1) and multiplying by the Chebyshev polynomials of the second kind U2q�2 gives the

following linear equation:

BA ¼ P, (A.4)

where A is the unknown column vector with elements An, P is the column vector with p on the first row and zeros

elsewhere and B is the matrix given by

Bq;j ¼ U2q�2 


Z 1

�1

T2j�1ðvÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p Fðkxðz� vÞÞdv. (A.5)

The coefficients Bq;j can be calculated using a symbolic calculation software such as Mathematica. Calculating a

15� 15 matrix B for a given kx takes about three hours on a laptop computer. Once these coefficients Bq;j are known,

the solution of Eq. (A.4) for A can be evaluated numerically. The Aj solutions can then be inserted into Eq. (A.2), which

gives the function pn after integration. This function is plotted in Fig. 2 for different values of kx.
Appendix B. Integral equation for the pressure along the chord

We want to solve the singular integral equation (40) for the pressure. To do so, the variables x and u are rescaled such

that

bx ¼ 2x� 1; bu ¼ 2u� 1. (B.1)

The new pressure is PnðbuÞ ¼ hpnðu; zÞiz, such that P0nðbuÞ ¼ hp0nðu; zÞ=2iz. Integral equation (40) becomes

1

4p

Z 1

�1

P0nðbuÞ bHðbx� bu;H�Þdbu ¼ F ðbxÞ, (B.2)

with bHðbx� bu;H�Þ ¼ Hðx� u;H�Þ and FðbxÞ is one of the derivatives of ynðxÞ. The function bH can be decomposed into

three terms

bHð bX ;H�Þ ¼ bH1 þ
1

H�
bH2 þ bH3ðH

�Þ, (B.3)

where

bH1ð bX Þ ¼ � 4bX , (B.4)
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bH2ð bX Þ ¼ �8 sgnð bX Þ, (B.5)

bH3ð bX ;H�Þ ¼ 8� p

H� þ j bX j sgnð bX Þ. (B.6)

For small aspect ratio, the term bH2=H� dominates and gives rise to the slender body approximation as shown in

Appendix C. For large aspect ratio, the term bH1 gives the first order of approximation (independent of H�) and

corresponds to the two-dimensional theory of Guo and Paı̈doussis (2000).

To solve integral equation (B.2) the function P0n is first expanded as

P0nðbuÞ ¼XM
i¼1

bAi
TiðbuÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bu2p , (B.7)

where Ti are the Chebyshev polynomials of the first kind. Then, injecting the expansion (B.7) into (B.2) and left

multiplying by the Chebyshev polynomial of the second kind Uq�1 (using the scalar product 
 defined by Eq. (A.3))

gives the linear system

XM
i¼1

Ci;qðH
�Þ bAi ¼ Fq, (B.8)

where Fq ¼ Uq�1 
 F and

Ci;qðH
�Þ ¼ Uq�1 


1

4p

Z 1

�1

TiðbuÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bu2p bHðbx� bu;H�Þdbu. (B.9)

The matrix C is decomposed into three terms corresponding to the three terms of bH defined in Eq. (B.3)

CðH�Þ ¼ Cð1Þ þ
1

H�
Cð2Þ þ Cð3ÞðH�Þ, (B.10)

where Cð1Þ is the identity matrix,

C
ð2Þ
i;q ¼

4

ip
Uq�1 


ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bx2

p
Ui�1ðbxÞ� 

, ðB:11Þ

¼ �
16

p2
q

q4 � 2q2ði2 þ 1Þ þ ði2 � 1Þ2
for q; i of same parity, ðB:12Þ

¼ 0 for q; i of different parity, ðB:13Þ

and Cð3ÞðH�Þ is evaluated numerically for a given aspect ratio.

Linear system (B.8) can then be solved to express the amplitudes bAi as a function of the coefficients Fq for a given H�.

Using Eq. (B.7) and integrating gives the average pressure hpnðx; zÞiz on the plate for a given Galerkin mode yn. The

results presented in the present paper were obtained for a Chebyshev truncation M ¼ 20 and Galerkin truncation

N ¼ 10. It is important to have a sufficient number of modes in the Galerkin discretisation if one wants to model

accurately the instability threshold (especially for large mass ratio M�) as it has already been shown by Lemaitre et al.

(2005).
Appendix C. Slender body approximation

For small kx, the average of the pressure along the span is obtained from Eq. (32) and is simply hpniz ¼ pkx=4.
Coming back to the dimensionless variables kx and z, evn can be expressed as

evnðkxÞ ¼ �
8

pH�
hepnðkx; zÞiz when H� ! 0. (C.1)

Following the same procedure as between Eqs. (38) and (41), one finds

HðX ;H�Þ ¼ �
8

H�
sgnðX Þ when H� ! 0. (C.2)
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This corresponds to the term bH2 in Appendix B. Integral equation (40) is then solved by integrating by parts, leading to

hpnðx; zÞiz ¼ �
pH�

4
�o2yn þ 2io

qyn

qx
þ
q2yn

qx2

� �
when H� ! 0. (C.3)

This result is the same as the one obtained by Lighthill (1960) and used by Lemaitre et al. (2005) in their study (they

added an additional tensile effect due to tension because their ribbon was hanged vertically). This latter expression can

be inserted into Eq. (11) to obtain the eigenmodes and eigenfrequencies for the slender body approximation. This

approximation is valid when the wavelength of the modes is large compared to the plate span.
Appendix D. Large span approximation

In the limit of large aspect ratio, kx is large and the average of the pressure along the span is obtained from Eq. (34).

Following the same procedure as between Eqs. (38) and (41), one finds

HðX ;H�Þ ¼ �
2

X
�

p
H�

sgnðX Þ þ O
1

H�2

� �
when H� ! 1. (D.1)

In the new variables defined in Appendix B, we have to solve the singular integral equation (B.2) where the function bH
is now

bHð bX ;H�Þ ¼ bH1 þ
p

8H�
bH2 þ O

1

H�2

� �
when H� ! 1. (D.2)

Linear system (B.8) has now to be solved with the new matrix

CðH�Þ ¼ Cð1Þ þ
p

8H�
Cð2Þ þ O

1

H�2

� �
. (D.3)

We have to remember that we are interested in determining the matrix P given by Eqs. (12) and (43) such that

P ¼ �o2PðMÞ þ 2ioPðGÞ þPðKÞ. (D.4)

As in Eq. (43), the terms on the right-hand side correspond to the added mass, gyroscopicity and stiffness pressure,

respectively. In this large span approximation, these matrices can be obtained easily if the scalar products are all

evaluated on the basis of the Chebyshev polynomials of the second kind. Indeed, once the following scalar products

have been evaluated numerically

YðMÞm;q ¼ Uq�1 
 ym; YðGÞm;q ¼ Uq�1 

dym

dx
; YðKÞm;q ¼ Uq�1 


d2ym

dx2
, (D.5,D.6,D.7)

the matrices PðX Þ (where the superscript X stands for M, G or K) can be obtained easily after some straightforward

algebra. They are expressed as powers of 1=H� such that

PðX Þ ¼ �
p
4

P
ðX Þ
0 þ

1

H�
P
ðX Þ
1

� �
þ O

1

H�2

� �
, (8)

where

P
ðX Þ
0 m;n ¼

XM
q¼1

1

q
YðMÞm;q Y

ðX Þ
n;q ; P

ðX Þ
1 m;n ¼ �

p
8

XM
q¼1

1

q
YðMÞm;q

XM
i¼1

C
ð2Þ
i;qY

ðX Þ
n;i . (D.9,D.10)

The above expressions are very easy to obtain since Eqs. (B.11)–(B.13) give an explicit expression for Cð2Þ. An analytical

expression of PðX Þ accurate up to order 1=H�2 could be obtained by the same method as we have shown in a previous

paper (Eloy et al., 2006). However, the improvement is not significant and the exact calculus detailed in Appendix B is

still necessary for moderate H�. Note that when P
ðX Þ
1 is set to zero, or equivalently for infinitely large aspect ratio H�,

we recover the results of the two-dimensional theory of Guo and Paı̈doussis (2000).
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